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Abstract: Number theory is or in older usage arithmetic is a branch of pure mathematics devoted primarily to the study of
the integer’s .it is sometimes called the queen of mathematics because of its foundational place in the discipline. The
number theory studies the prime numbers as well properties of objects made out of integers and also study to the
matrices, determinant, cryptography. The cryptography is based on some specific areas of mathematics including
number theory, linear algebra, algebra structures and we need to understand how cryptography is the study of
mathematical techniques related to aspects of information security.
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I. Introduction

Number theory may be one of the “purest” branches of mathematics, but it has turned out to be one of the most useful when
it comes to computer security. And also useful to the counting the number. The paper aims to introduce the reader to application
of number theory in cryptography we will briefly talk about RSA keys in cryptography. Many tools like integer division,
Euclidean algorithm, GCD, modulus etc.

1.1Binary Operations: In cryptography, we are interested in three binary operations applied to the set of integers. A binary
operation takes two inputs and creates one output. Three common binary operations defined for integers are addition, subtraction,
and multiplication. Each of these operations takes two inputs (a and b) and creates one output (c) as shown in Figure 1.1. The two
inputs come from the set of integers; the output goes into the set of integers.

Note that division does not fit in this category because, as we will see shortly, it produces two outputs instead of one.

L= -L-L& L3,

Figure 1.1 Three binary operation for the set of integers

1.1.1Integer Division: An integer arithmetic, if we divide a by n, we can get g and r. The relationship between these four
integers can be shown as

[a=gxn+r |
In this relation, a is called the dividend; g, the quotient; n, the divisor; and r, the remainder. Note that this is not an operation,
because the result of dividing a by n is two integers, g and r. We can call it division relation.
Example 1.1: Assume that a = 255 and n =11. We can find q =23 and r= 2 using the division algorithm we have learned in
arithmetic as shown in Figure 1.2.

13+—

Figure 1.2 finding the quotient and the remainder

Most computer languages can find the quotient and the remainder using language-specific operators. For example, in the C
language, the operator / can find the quotient and the operator % can find the remainder.

1.1.2 Two Restrictions: When we use the above division relationship in cryptography, we impose two restrictions. First, we
require that the divisor be a positive integer (n =0). Second, we require that the remainder be a nonnegative integer (r > 0). Figure
1.3 shows this relationship with the two above-mentioned restrictions.
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Figure 1.3: Two restriction of variable
Example 1.2: When we use a computer or a calculator, r and q are negative when a is negative. How can we apply the restriction
that r needs to be positive? The solution is simple, we decrement the value of q by 1 and we add the value of n to r to make it
positive.

—255 = (23 x 11) +(-2) <> —255 = (—24 x 11)+9
We have decremented —23 to become —24 and added 11 to —2 to make it 9. The above relation is still valid.
1.1.3 The Graph of the Relation: We can show the above relation with the two restrictions on n and r using two graphs in Figure
1.4 The first one shows the case when a is positive; the second when a is negative.

Figure 1.4 Graph of division algorithm

Starting from zero, the graph shows how we can reach the point representing the integer a on the line. In case of a positive a, we
need to move g X n units to the right and then move extra r units in the same direction. In case of a negative a, we need to move
(g — 1) x n units to the left (q is negative in this case) and then move r units in the opposite direction. In both cases the value of r
is positive.
1.1.4 Divisibility: Let us briefly discuss divisibility, a topic we often encounter in cryptography. If a is not zero and we let r =0
in the division relation, we get

a=gxn
We then say that n divides a (or n is a divisor of a). We can also say that a is divisible by n. When we are not interested in the
value of g, we can write the above relation-ship as a| n. If the remainder is not zero, then n does not divide a and we can write the
relationship as a=q x n.
Properties: Following are several properties of divisibility.
Property 1: if a| 1, then a = £1.
Property 2: if a| b and b| a, then a = +b.
Property 3: if a| b and b| c, then a| c.
Property 4: if a| b and a| ¢, then a| (m x b + n x ¢), where m and n are arbitrary integers.
1.1.5 Greatest Common Divisor: One integer often needed in cryptography is the greatest common divisor of two positive
integers. Two positive integers may have many common divisors, but only one greatest common divisor. For example, the

common divisors of 12 and 140 are 1, 2, and 4. However, the greatest common divisor is 4. See Figure 1.5.
H

Divisors of 140 Divisorof12

Common Divisors
of 140 and 12

Figure 1.5 : common divisors of two integers
The greatest common divisor of two positive integer is the largest integer that can divide both integer.
1.1.6 Euclidean Algorithm: Finding the greatest common divisor (gcd) of two positive integers by listing all common divisors is
not practical when the two integers are large. Fortunately, more than 2000 years ago a mathematician named Euclid developed an
algorithm that can find the greatest common divisor of two positive integers.
Example 1.5: gcd (36, 10) =2, ged (10, 6) =2, and so on. This means that instead of calculating gcd (36, 10), we can find gcd (2,
0). Figure 1.6shows how we use the above two facts to calculate gcd (a, b).
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Figurel.6: Euclidean algorithm
We use two variables, r; and r,, to hold the changing values during the process of reduction. They are initialized to a and b. In
each step, we calculate the remainder of r; divided by r, and store the result in the variable r. We then replace r,; by r, and r, by r.
The steps are continued until r, becomes 0. At this moment, we stop. The gcd (a, b) is ry

| When gcd (a, b) = 1, we say that a and b are relatively prime. |
1.1.7 The Extended Euclidean Algorithm: Given two integers a and b, we often need to find other two integers, s and t, such
that sxa+txb=gcd(a b)
The extended Euclidean algorithm can calculate the ged (a, b) and at the same time calculate the value of s and t. The algorithm
and the process is shown in Figure 1.7.

Figure 1.7: Extended Euclidean algorithm
In each step, r;, p, and r have the same values in the Euclidean algorithm. The variables r; and r, are initialized to the values of
a and b, respectively. The variables s; and s; are initial-ized to 1 and 0, respectively. The variables t; and t, are initialized to 0 and
1, respectively. The calculations of r, s, and t are similar, with one warning. Although r is the remainder of dividing r; by r,, there
is no such relationship between the other two sets. There is only one quotient, g, which is calculated as r,| r, and used for the other
two calculations.

1.2 Linear Diophantine Equations: Although we will see a very important application of the extended Euclidean algorithm in
the next section, one immediate application is to find the solutions to the linear Diophantine equations of two variables, an
equation of type ax + by = ¢. We need to find integer values for x and y that satisfy the equation. This type of equation has either
no solution or an infinite number of solutions. Let d = gcd (a, b). If d ¢, then the equation has no solution.-If d | c, then we have an
infinite number of solutions. One of them is called the particular; the rest, general.

A linear Diophantine equation of two variables is ax + by = c.

1.3 Particular Solution:If d| c, a particular solution to the above equation can be found using the following steps
1.Reduce the equation to a;x + byy = ¢; by dividing both sides of the equation by d. This'is possible because d divides a, b, and ¢
by the assumption.
2.Solve for s and t in the relation a;s + byt = 1 using the extended Euclidean algorithm.
3.The particular solution can be found:
. Particular solution: x, = (c/d)s and yo =(c/d)t.
. General Solutions: After finding the particular solution, the
general solutions can be found:
| General solutions: x = X, + k (b/d) and y=yo—k(a/d) wherek=0,1,2,... |

1.4 Modular Arithmetic:

The division relationship (a = g x n + r) discussed in the previous section has two inputs (a and n) and two outputs (q and r). In
modular arithmetic, we are interested in only one of the outputs, the remainder r. We don’t care about the quotient g. In other
words, we want to know what is the value of r when we divide a by n. This implies that we can change the above relation into a
binary operator with two inputs a and n and one output r.

Modulo Operator: The above-mentioned binary operator is called the modulo operator and is shown as mod. The second input
(n) is called the modulus. The output r is called the residue. Figure 1.8 shows the division relation compared with the modulo
operator.

[z=t....2.1L0.1L2...3 ] [z=t....210,12...} |
Ja la
H —»d=g=n+r Relation R mod Operator
(positive) {positiva)
g F (nonnsgative) F(nonnegative)

Figure 1.8 Division relation and modular operator
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As Figure 1.8 shows, the modulo operator (mod) takes an integer (a) from the set Z and a positive modulus (n). The operator
creates a nonnegative residue (r). We can say a mod n=r

1.5 Congruence: In cryptography, we often used the concept of congruence instead of equality. Map-ping from Z to Z, is not
one-to-one. Infinite members of Z can map to one member of Z,. For example, the result of 2 mod 10 = 2, 12 mod 10 = 2, 22 mod
2 = 2, and so on. In modular arithmetic, integers like 2, 12, and 22 are called congruent mod 10. To show that two integers are
congruent, we use the congruence operator (=). We add the phrase (mod n) to the right side of the congruence to define the value
of modulus that makes the relationship valid.

11

|1—(

2 25 |

=k af—' ==l

Zio=1(0. --2

Fs= 251

»

= 22 (mod 10) l

Figure 1.9:congruence relationship

b.The phrase (mod n) that we insert at the right-hand side of the congruence opera-tor is just an indication of the destination set
(Z,). We need to add this phrase to show what modulus is used in the mapping. The symbol mod used here does not have the
same meaning as the binary operator. In other words, the symbol mod in 12 mod 10 is an operator; the phrase (mod 10) in 2 = 12
(mod 10) means that the destination set is Z;.

1.6 Inverses: When we are working in modular arithmetic, we often need to find the inverse of a number relative to an operation.
We are normally looking for an additive inverse (rela-tive to an addition operation) or a multiplicative inverse (relative to a
multiplication operation).

1.6.1 Additive Inverse: In Z,, two numbers a and b are additive inverses of each other if a + b=0 (mod n)

In Z,, the additive inverse of a can be calculated as b = n — a. For example, the additive inverse of 4 in Z;5is10—4=6.

. In modular arithmetic, each integer has an additive inverse.

. The sum of an integer and its additive inverse is congruent to 0 modulo n.

Note that in modular arithmetic, each number has an additive inverse and the inverse is unique; each number has one and only
one additive inverse. However, the inverse of the number may be the number itself.
1.6.2 Multiplicative Inverse:
In Z,, two numbers a and b are the multiplicative inverse of each other if
axb=1(modn)
. In modular arithmetic, an integer may or may not have a multiplicative inverse.
. When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

It can be proved that a has a multiplicative inverse in Z, if and only if gcd (n, @) = 1.In this case, a and n are said to be relatively
prime.
The integer a in Z, has a multiplicative inverse if and only if gcd (n, a) = 1 (mod n)

Il. MATRICES

A matrix is a rectangular array of | x m elements, in which I is the number of rows and m is the number of columns.
A matrix is normally denoted with a boldface uppercase letter such as A. The element aj; is located in the ith row and jth column.
Although the elements can be a set of numbers, we discuss only matrices with elements in Z. Figure 2.1 shows a matrix.
If a matrix has only one row (I = 1), it is called a row matrix; if it has only one col-umn (m = 1), it is called a column matrix. In a
square matrix, in which there is the matrix A

m columns
a a
11 12 1o
] |0, a, a.
Matrix A: = b - -
a a a

Figure 2.1: A matrix of size 1x m

Same number of rows and columns (1=m), the elements a;; a;........ amm Make the main diagonal .an additive identity matrix
,denoted as 0,is a matrix with all rows and columns sets as 0,is a matrix with all rows and columns sets to 0’ s .an identity
matrix ,denoted as | ,is a square matrix with 1s on the main diagonal and Os .figure 1.19 shows some examples of matrices with
elements from Z.
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2.1 Operations and Relations
In linear algebra, one relation (equality) and four operations (addition, subtraction, multiplication, and scalar multiplication) are
defined for matrices.
2.2 Equality:

Two matrices are equal if they have the same number of rows and columns and the corresponding elements are equal. In
other words, A = B if we have a;; = bj; for all i’s and j ’s.
2.3 Addition and Subtraction

Two matrices can be added if they have the same number of columns and rows. This addition is shown as C = A + B. In
this case, the resulting matrix C has also the same number of rows and columns as A or B. Each element of C is the sum of the
two corresponding elements of A and B: c¢;; = & + bjj. Subtraction is the same except that each element of B is subtracted from the
corresponding element of A: d;j = a;; — by;

2.4 Determinant: The determinant of a square matrix A of size m x m denoted as det (A) is a scalar calculated recursively as
shown below:

1.1fm=1, det (A) =an
2.1Fm > 1, det (A) (1)) x ay x det (A i=1,23,....m

Where A is a matrix obtained from A by deleting the ith row and jth column.

The determinant is defined only for a square matrix.
2.5 Inverses : Matrices have both additive and multiplicative inverses.
Additive Inverse: The additive inverse of matrix A is another matrix B such that A + B = 0. In other words, we have bj; = — a; for
all values of i and j. Normally the additive inverse of A is defined by —A.
Multiplicative Inverse: The multiplicative inverse is defined only for square matrices. The multiplicative inverse of a square
matrix A is a square matrix B such that A x B = B x A = |. Normally the multiplicative inverse of A is defined by A™. The
multiplicative inverse exists only if the (A) has a multiplicative inverse in the corresponding set. Since no integer has a
multiplicative inverse in Z, there is no multiplicative inverse of a matrix in Z. However, matrices with real elements have matrices
only if det (A) #0.

| Multiplicative inverses are only defined for square matrices |

2.6 Matrices Cryptography uses residue matrices: matrices in all elements are in Z,. All operations on residue matrices are
performed the same as for the integer matrices except that the operations are done in modular arithmetic. One. interesting result is
that a residue matrix has a multiplicative inverse if the determinant of the matrix has a multiplicative inverse in Z .. In other
words, a residue matrix has a multiplicative inverse if gcd (det(A), n) = 1.

Example 1.2: Figure 2.2 shows a residue matrix A in Z, and its multiplicative inverse A™. We have det(A) = 21 which has the
multiplicative inverse 5 in Z,. Note that when we multiply the two matrices, the result is the multiplicative identity matrix in Zys.

3 s 7 2 15 21 0 15

A- |1 4 7 2 Al |23 o 0 2
6 3 9 17 15 16 18 3

13 s 4 16 24 7 15 3
det(A) = 21 der(A 1y= 5

Figure2.2 Residue matrix and it’s multiplicative inverse
Congruence: Two matrices are congruent modulo n, written as A = B (mod n), if they have the same number of rows and
columns and all corresponding elements are congruent modulo n. In other words, A = B (mod n) if a;; = bj; (mod n) for all i’s and

J’s.

Linear Congruence: Cryptography often involves solving an equation or a set of equations of one or more variables with
coefficient in Z,. This section shows how to solve equations when the power of each variable is 1 (linear equation).

Single-Variable Linear Equations: Let us see how we can solve equations involving a single variable that is, equations of the
form ax =b (mod n). An equation of this type might have no solution or a limited number of solutions. Assume that the gcd (a, n)
=d. If d b, there is no solution. If d| b, there are d solutions.

If d| b, we use the following strategy to find the solutions:

o Reduce the equation by dividing both sides of the equation (including the modulus) by d.
o Multiply both sides by the multiplicative inverse of a| gcd (a, n) to find the particular solution Xg.
o The general solutionsare x =x, + k (n| d) fork=10, 1, ..., (d = 1).

2.7 Set of Linear Equations: We can also solve a set of linear equations with the same modulus if the matrix formed from the
coefficients of the variables is invertible. We make three matrices. The first is the square matrix made from the coefficients of
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variables. The second is a column matrix made from the variables. The third is a column matrix made from the values at the right-
hand side of the congruence operator. We can interpret the set of equations as matrix multiplication. If both sides of congruence
are multiplied by the multiplicative inverse of the first matrix, the result is the variable matrix at the right-hand side, which means
the problem can be solved by a matrix multiplication as shown in Figure 2.3

aypx) + ap + ...+ aip¥n = b1 , AEIRE TR [ 1
@+ am + ...+ aypxy = b2 0 a a ’ ‘. a 1
. |
X \ }
=3 @ a a ! le a a
anixy + ayn - o = AaXn = on . o =l | % | oy i e K] 1REY)

b, Imspretation ¢, Solutwa

a. Equations
Figure 2.3: Set of linear equation

11l. CRYPTOGRAPHY
3.1 A cryptosystem is a five-tuple (M,C,K,E,D),
where the following condition are satisfied
1. M is a finite set of possible plaintexts or messages
2. C is a finite set of possible ciphertexts or cryptograms
3. K is a finite set of possible keys
4. For each K €K, there is an encryption rule EK €E and a corresponding decryption rule DK € D. Each EK : M — C and DK :
C — M are functions such that DK(EK(x)) = x for every message XxeM.
The RSA Cryptosystem The various observations just stated form the basis for the RSA public-key cryptosystem,
which was invented at MIT in 1977 by Ronald Rivest, Adi Shamir and Leonard Adleman.
The public key in this cryptosystem consists of the value n, which is called the modulus, and the value e, which is
called the public exponent. The private key consists of the modulus n and the value d, which is called the private exponent.

3.2. An RSA public-key / private-key pair can be generated by the following steps:

1. Generate a pair of large, random primes p and g. 2. Compute the modulus n as n = pg. 3. Select an odd public exponent e
between 3 and n-1 that is relatively prime to p-1 and g-1. 4. Compute the private exponent d from e, p and g. (See below.) 5.
Output (n, e) as the public key and (n, d) as the private key.

The encryption operation in the RSA cryptosystem is exponentiation to the e™ power modulo n.
¢ =ENCRYPT (m)=m" mod n .

The input m is the message; the output c is the resulting ciphertext. In practice, the message m is typically some kind of
appropriately formatted key to be shared. The actual message is encrypted with the shared key using a traditional encryption
algorithm. This construction makes it possible to encrypt a message of any length with only one exponentiation.

The decryption operation is exponentiation to the d™ power modulo n:

m = DECRYPT (c) = cdmodn

The relationship between the exponents e and d ensures that encryption and decryption are inverses, so that the decryption
operation recovers the original message m. Without the private key (n, d) (or equivalently the prime factors p and q), it’s difficult
to recover m from ¢. Consequently, n and e can be made public without compromising security, which is the basic requirement
for a public-key cryptosystem.

The fact that the encryption and decryption operations are inverses and operate on the same set of inputs also means that the
operations can be employed in reverse order to obtain a digital signature scheme following Diffie and Hellman’s model. A
message can be digitally signed by applying the decryption operation to it, i.e., by exponentiating it to the d power:

5= 8IGN (m) = memodn .

The digital signature can then be verified by applying the encryption operation to it and comparing the result with and/or
recovering the message:

m = VERIFY (5) =5 mod n .
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In practice, the plaintext m is generally some function of the message, for instance a formatted one-way hash of the message.
This makes it possible to sign a message of any length with only one exponentiation. Figure 1.1:gives a small example showing
the encryption of values m from 0 to 9 as well as decryptions of the resulting cipher texts. The exponentiation is optimized as
suggested above. To compute m® mod n, one first computes m* mod n with one modular squaring, then m® mod n with a modular
multiplication by m. The decryption is done similarly: One first computes ¢c> mod n, then ¢? mod n, ¢® mod n, and ¢’ mod n by
alternating modular squaring and modular multiplication.

H;i:.h)f::f ﬂl;' - N;f:: Foxfr Trorra -f.r'ﬂrh'ﬂ"

. X E i - JE
B 5, = A s v P

25 1
T 4 ol | i
* 13

Figure 3.2: Public key cryptography

3.3. The mathematics of the RSA public-key cryptosystem:

Cryptosystem is used keys and sign messages. This requires a careful analysis of various methods for relating of the value m to
the actual message or key, some of which are much better for security than others. We have needed to understand the impact of
various proposed improvements to integer factorization methods, especially in terms of recommended key sizes. This requires
assessment of the effectiveness of those methods.

Because of the widespread deployment of the RSA algorithm, many other researchers are looking at these same problems today.
We benefit significantly from their work as we look to improve our own products and provide guidance to our customers. Our
work in industry standards aims to promote the adoption of the best practices we have learned. The Work Has Just Begun Simple
concepts in mathematics — prime numbers, integer factorization, modular exponentiation — have had a dramatic impact on
computer security, particularly for online commerce. The theory is working well in practice through algorithms like Diffie
Hellman key agreement, the RSA public-key cryptosystem and more recently elliptic curve cryptography.

In cryptography, “it’s not broken” is no reason to avoid trying to fix it. Mathematicians still don’t know whether or not there are
faster methods for integer factorization than the ones currently available. Research is needed to try to find faster methods, as well
to try to prove that there aren’t any. A related research problem is to confirm whether modular root-extraction is or isn’t as hard
as integer factorization.

Interestingly, much faster methods for integer factorization already exist in theory, but they run on computers that haven’t yet
been built. In particular, if one could build a full scale quantum computer, it will be possible to break a large number into its
factors essentially as easily as it is to put the number together by multiplication. (Such a computer would also break the Diffie-
Hellman and elliptic curve algorithms.)

In case one or more of the current public-key cryptosystems is broken in the future, it would be helpful to have alternatives to
choose from. This is another important area for research. What other hard problems in mathematics are there from which a
public-key cryptosystem and digital signature scheme might be derived?

Mathematics has many more applications in computer security than just public-key cryptography, of course. The design and
analysis of more traditional encryption algorithms and one-way function also has a strong mathematical component, although
perhaps not one so elegant as for public-key cryptography. Intriguing mathematical constructions have also led to new types of
cryptography — like identity-based encryption, a form of public-key cryptography where one’s name or e-mail address itself
becomes the public key, avoiding the need for a directory. More groundbreaking applications are likely to emerge over time as
knowledgeable people continue to search what’s concealed within mathematics. Who knows what other useful things we might
find by exploring an otherwise obscure formula?
Computing the Private Exponent Let n be the product of two distinct prime numbers p and g, and let e be the public exponent as
defined above. Let L = LCM (p-1, g-1) denote the least common multiple of p-1 and g-1. The private exponent d for the RSA
cryptosystem is any integer solution to the congruence

de=1mod L.
The value d is the inverse of e modulo L. The requirement that e be relatively prime to pl and g-1 ensures that an The RSA
cryptosystem works because exponentiation to the d™ power modulo n is the inverse of exponentiation to the e power when the
exponents d and e are inverses modulo L. That is, for all m between 0 and n-1, inverse exists. Modular inverses are easy to find
with the Extended Euclidean Algorithm or similar methods.

m= (m‘)d mod »n

The proof of this fact is left as an exercise to the reader. This result follows the Chinese remainder theorem.
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IV. CONCLUSION

In this paper perceive that every number theory plays an important role in cryptography to hide information .many tools like
primes, divisors, congruence, two restriction variables, Euclidean algorithm, gcd, matrices etc plays important role in
cryptography, the cryptography used for security purpose. This gives an idea of cryptosystem in the context of algebra and
number theory. The abstract algebra and number theory which is particularly useful for public key cryptosystem as well as
cryptographic techniques described in this paper.
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